5 research outputs found

    The path towards ultra-reliable low-latency communications via HARQ

    Get PDF
    Ultra-reliable Low-latency Communications (URLLC) is potentially one of the most disruptive communication paradigms offered by the next generation of wireless networks, 5G. This is easily demonstrated by the diverse set of applications it enables, such as autonomous driving; remote surgery; wireless networked control systems; mission-critical machine type communication; and many more. Basically, URLLC consists of the almost 100% guarantee of message delivery within a very short time interval. Furthermore, the pressure from climate change coupled with the massive growth of cellular networks expected to occur in the near future means that URLLC must also be energy efficient. On its own, achieving low-latency with high reliability is already a stringent requirement, but when that is coupled with the need for resource efficiency, it becomes even more challenging. That is the motivation behind this thesis: to study URLLC in the context of resource efficiency. Thus, a study of the counterintuitive use of retransmissions, more specifically Hybrid Automatic Repeat Request (HARQ), in the scenario of URLLC is proposed and carried out. HARQ is very attractive in terms of resource efficiency, and that is the motivation behind using it even when stringent time constraints are imposed. Four contributions are made by the present work. Firstly, a mathematical problem is presented and solved for optimizing the number of allowed retransmission rounds considering HARQ in URLLC, considering both energy efficiency as well as electromagnetic irradiation. This representation relies on a few assumptions in order to be realizable in practical scenarios. Namely, these assumptions are regarding the possibility of early error detection for sending the feedback signals and on not having to consider medium access control introduced delays. Secondly, we consider one important aspect of wireless systems, which is that they can be greatly optimized if they are designed with a specific application in mind. Based on this, a study of the use of HARQ specifically tuned for Networked Control Systems is presented, taking into account the particular characteristics of these applications. Results here show that fine-tuning for the specific characteristics of these applications yields better results when compared to using the results from the previous contribution, which are more application-agnostic. These improved results are possible thanks to the exploitation of application-specific characteristics, more specifically the use of a packetized predictive control strategy jointly designed with the communication protocol. Next, the concept of HARQ for URLLC is extended to a larger scale in an effort to relax the aforementioned assumptions. This is studied within the framework of self-organizing networks and leverages machine learning algorithms in order to overcome those strict assumptions from the first contribution. This is demonstrated by developing a digital twin simulation of the city of Glasgow and generating a large dataset of users in the cellular network, which is a third contribution of this thesis. Then, machine learning (more specifically long short-term convolutional neural networks) is applied for predicting message failures. Lastly, a protocol to exploit such predictions in combination with HARQ to deliver downlink URLLC is applied, resulting in a fourth contribution. In summary, this thesis presents a latency aware HARQ technique which is shown to be very efficient. We show that it uses up as much as 18 times less energy than a frequency diversity strategy and that it can emit more than 10 times less energy electromagnetic field radiation when compared to the same strategy. We also propose joint design techniques, where communication and control parameters are tweaked at the same time, enabling wireless control systems with a three-fold reduction in required bandwidth to achieve URLLC requirements. Lastly, we present a digital twin of the city of Glasgow which enables us to create a prediction algorithm for predicting channel quality with very high accuracy—root mean square error on the order of 10−2. This ties into the rest of the contributions as it can be used to enable early feedback detection, which in turn can be used to make sure the latency aware protocol can be employed

    Delay-aware energy-efficient joint power control and mode selection in device-to-device communications for FREEDM systems in smart grids

    No full text
    Cellular technology with long-term evolution (LTE)-based standards is a promising technology for smart grid communication networks. However, the integration of cellular technology and smart grid communications is a significant challenge due to the transmission of simultaneous and delay-sensitive smart grid data. The Device-to-device (D2D) communications are proposed as critical solutions to enhance the performance of the LTE. In this paper, we study energy efficiency and delay problems in D2D underlaying cellular communications for the future renewable electric energy delivery and management (FREEDM) system in smart grid with different message sizes and varying channel conditions. We adopt a D2D-assisted relaying framework to assist links that meet poor channel conditions in order to increase the data rate of intelligent energy management devices with large size report. We propose a joint power control and mode selection scheme to deal with the problem and develop a brute-force-based algorithm to find the solutions. We conduct simulations to show the effectiveness of the proposed scheme in balancing the trade-off between energy efficiency and end-to-end delay and show significant energy efficiency improvements when exploiting the proposed scheme compared to direct and relaying schemes in a variety of different conditions

    Reducing EMF emissions in ultra-reliable low-latency communications with HARQ

    No full text
    No abstract available
    corecore